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Abstract The coefficient of relationship is defined as the 
correlation between the additive genetic values of two 
individuals. This coefficient can be defined specifically 
for a single quantitative trait locus (QTL) and may 
deviate considerably from the overall expectation if it is 
taken conditional on information from linked marker 
loci. Conditional halfsib correlations are derived under 
a simple genetic model with a biallelic QTL linked to a 
biallelic marker locus. The conditional relationship co- 
efficients are shown to depend on the recombination 
rate between the marker and the QTL and the population 
frequency of the marker alleles, but not on parameters of 
the QTL, i.e. number and frequency of QTL alleles, 
degree of dominance etc., nor on the (usually unknown) 
QTL genotype of the sire. Extensions to less simplified 
cases (multiple alleles at the marker locus and the QTL, 
two marker loci flanking the QTL) are given. For arbi- 
trary pedigrees, conditional relationship coefficients can 
also be derived from the conditional gametic covariance 
matrix suggested by Fernando and Grossman (1989). 
The connection of these two approaches is discussed. 
The conditional relationship coefficient can be used for 
marker-assisted genetic evaluation as well as for the 
detection of QTL and the estimation of their effects. 

Key words Relationship coefficients �9 Genetic 
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Introduction 

The concept of coefficients of inbreeding and relation- 
ship was introduced by Wright (1922) into quantitative 
genetics. The coefficient of relationship of two individ- 
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uals x and y, Rxy, is defined as the correlation between 
the additive genetic values of the two individuals. There 
is also a probabilistic interpretation, since under pan- 
mictic conditions, Rxy equals twice the coefficient of 
coancestry, Axy (Mal6cot 1948), which is the probability 
that a random gene in individual x is identical by 
descent to random gene in individual y (Wright 1969). 

These coefficients are defined over the whole genome, 
i.e. on average for all loci or, equivalently, for a random- 
ly sampled locus out of the population of all loci in the 
genome. It is also possible to define these coefficients 
specifically for a single locus. The relationship at this 
single locus may deviate substantially from the overall 
expectation if additional information can be used. This 
additional information can be the knowledge of genetic 
markers that are linked to the locus considered. If, say, 
two halfsibs have obtained the same marker allele from 
their sire, the probability that they have also obtained 
the same allele at a quantitative trait locus (QTL) linked 
to this marker locus is increased, and the expected 
coefficient of relationship for the QTL will be larger than 
0.25. 

Fernando and Grossman (1989) have suggested an 
algorithm to set up a gametic relationship matrix for a 
QTL conditional on information from one linked 
marker, which can be readily extended to account for 
several independent marker-QTL pairs (Fernando and 
Grossman 1989; Cantet and Smith 1991). Multiple de- 
pendent markers were considered by Goddard (1992). It 
will be shown later how to extract conditional coeffi- 
cients of relationship from these gametic relationship 
matrices. 

The approach presented here follows a different con- 
cept in that it derives the conditional correlation of the 
genetic values at the QTL considered rather than the 
variances and covariances of the two respective gametic 
values. The derivation will be given in detail for a simple 
case; the conditional halfsib correlation at a biallelic 
QTL with one linked biallelic marker. Extensions to less 
simplified situations and possible applications will be 
indicated afterwards. 



The genetic model 

Consider a QTL and a marker locus, both located on the 
same autosomal chromosome. For simplicity and, as 
will be shown later, without loss of generality, only two 
alleles are assumed at both loci: Q and R at the QTL and 
A and B at the marker locus. Inheritance at the marker 
locus is assumed to be codominant, i.e. the genotype of 
an individual can be perfectly identified. 

Let the population frequency of alleles Q and R 
be q and (1 - q) and the frequency of alleles A and B 
be m and ( l - m ) .  Following the concept of geno- 
typic values (Falconer 1989), homozygous QQ indi- 
viduals have the genotypic value /~ + a, homozygous 
RR individuals have the value/~ - a and heterozygous 
QR or RQ individuals have the value # + d. The two 
alleles at the marker locus are assumed to be neutral 
with respect to the quantitative trait considered. 
The distance between the QTL and the marker locus 
is expressed as recombination rate r, with r = 0 indi- 
cating complete linkage and r = 0.5 indicating free re- 
combination. 

In addition to this one locus affecting the quanti- 
tative trait, there may be an infinite number of loci that 
contribute to the phenotype by small additive effects. 
Their additive contribution (excluding the above de- 
scribed QTL) is summarized in the polygenic additive 

2 All these loci are assumed to be genetic variance %. 
unlinked to both the marker locus and the QTL. In the 
further derivation, progeny groups of sires which are 
neither inbred nor related to each other and are mated 
to a random sample of dams are considered. With such a 
halfsib structure, all interactions between or within loci 
can be included in the residual error variance with the 
exception of the additive x additive interaction between 
two or more loci, which will be ignored. The population 
is assumed to be in Hardy-Weinberg equilibrium at all 
loci and no linkage disequilibrium between loci is as- 
sumed. 
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Marker information in a progeny test design 

Let us consider a sire that is heterozygous AB at the 
marker locus. If the marker locus and the QTL are 
linked, i.e. r < 0.5, two offspring with marker genotype 
AA are on average more similar than one offspring with 
marker genotype AA and another one with marker 
genotype BB. This is so because the AA individuals both 
have obtained the same marked chromosome segment 
and, therefore, with probability (1 - r) 2 > 0 . 2 5 ,  the same 
QTL-allele from the father, while the BB offspring has 
inherited the other marked chromosome segment and, 
therefore, only with probability (1 - r)r < 0.25 the same 
QTL-allele as the offspring with marker genotype AA. 

Given a sire is heterozygous at the marker locus, he 
carries with probability q(1 - q) allele A and Q on one 
chromosome and B and R on the other. With the same 
conditional probability, the linkage phase may be A - R  
and B-Q,  but let us restrict the considerations to the 
former case. With a given recombination rate r, gametes 
A-Q  and B -R  are produced with probability P(A-  
Q) = P ( B - R ) =  0 .5 (1 -  r), and gametes A-R  and B - Q  
are produced wifh probability P ( A - R ) =  P ( B -  Q ) =  
0.5r. If this Sire is mated to females that are randomly 
sampled from a population that is in Hardy-Weinberg 
equilibrium, the respective probabilities for the female 
gametes are P(A-Q) = mq, P(A-R) = m(1 - q), 
P(B-Q) = (1 - m)q and P(B-R) = (1 - m)(1 - q). In 
Table 1, the 16 possible offspring genotypes and their 
expected frequencies are given. 

If we now look at the offspring with marker genotype 
AA in the upper left 2 x 2 part of Table 1, their expected 
proportion in the whole offspring group is 0.5m. Given 
this marker genotype, the conditional probabilities of 
QTL genotypes QQ, QR and RR are ( 1 -  r)q, ( 1 -  r) 
(1 - q) + rq and r(1 - q), respectively. 

Let M~. be the marker genotype of the sire (indicated 
by the superscript s) with three different categories: 
M] = AA, M~ = AB, and M~ = BB. Analogously, let M ~ 

Table 1 Geno types  and  geno type  frequencies arising under  the a s sumed  ma t ing  scheme for a sire with geno type  A - Q / B - R  

Pa te rna l  F requency  
gamets  

M a t e rna l  gemetes  

A - Q  A - R  B - Q  B - R  

mq m(1 -- q) (1 -- m)q (1 -- m)(1 -- q) 

A - Q  A - R  B - Q  B - R  
A - Q  A - Q  A - Q  A - Q  A - Q  

0.5(1 - r) 0.5(1 - r)mq 0.5(1 - r)m(1 - q) 0.5(1 - r)(1 - m)q 0.5(1 - r)(1 - m)(1 - q) 

A - Q  A - R  B - Q  B - R  
A - R  A - R  A - R  A - R  A - R  

0.5r 0.5rmq 0.5rm(1 - q) 0.5r(1 - m)q 0.5r(1 - m)(1 - q) 

A - Q  a R B - Q  B - R  
B - Q  B - Q  B - Q  B - Q  B - Q  

0.5r 0.5rmq 0.5rm(1 - q) 0.5r(1 - m)q 0.5r(1 - m ) ( 1  - q) 

A - Q  A - R  B - Q  B - R  
B R B - R  B - R  B - R  B - R  

0.5(1 -- r) 0.5(1 -- r ) m q  0.5(1-r)m(1 - q) 0.5(1 r)(1 -- m)q 0.5(1-r)(1 - m)(1 - q) 
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be the marker genotype of the offspring (indicated by the 
superscript o) with three different categories: M] -- AA, 
M~ = AB, and M ~ = BB. Given the sire is heterozygous, 
the conditional probabilities of the daughter's marker 
genotype are 

O $ m P ( M  1 I M z )  - -  0 . 5 m  

P(M~ IMp) = 0.5 

P(M;IM~) = 0.5(1 - m). 

Considering only sires that are heterozygous at the 
marker locus, there are four different sire marker-QTL 
genotype combinations MQ~ 

A - Q  A - Q  
M Q ]  = B -- Q MQ~z = B - R 

A - R  A - R  
MQ~3 = B - Q MQ~4 = B - R" 

Finally, let QO be the QTL genotype of the offspring with 
three different categories: Q~ = QQ, Q~ = QR, and 
Q~ = RR. Then, the conditional probabilities for the 
example considered here are 

P(Q] IM], M Q ~ )  = (1 - r)q 

P(Q~176 ~, M Q ~ )  = (1 - r)(1 - q) + rq 

P(Q~ IM], M Q ~ )  = r(1 - q). 

The conditional probabilities for all possible constel- 
lations are given in Table 2. For sires that are 
homozygous at the QTL, probabilities only depend on 
the population frequency of the QTL alleles. Condi- 

tional probabilities in the offspring sires that are hetero- 
zygous at the QTL depend on allele frequencies at the 
marker locus and the QTL and also on the recombina- 
tion rate. 

The expected genotypic value of an individual with 
QTL genotype Q,, is 

E(y IQI )  = p + a 

E(yl  Q2) = ~t + d 

E(y] Q3) =/~ - a. 

The expected phenotypic value Yijkt of progeny 1 with 
marker genotype k, from sirej with marker-QTL combi- 
nation MQI, is 

3 

E(Yijkl lM ~, MQ~) = ~ [P(Q~ MQ~) x E(Yi~,, I Q,O,,)]. 
m = l  

For the example given above, this yields 

E(y2j,tIM~ MQ~2) =/~ +((1 - r)q - r(1 - q))a + ((1 - r) 

x (1 -- q) + rq)d 

= # + (q - r)a + (2qr - r - q + 1)d. 

Let % be the expected deviation of a daughter with 
marker genotype M~ of a sire with marker-QTL geno- 
type MQ7 from the overall mean/~, i.e. 

Cik = E(ygjkz -- ktl M~, MQT). 

These conditional expectations can be derived for 
all possible genetic constellations and are given in 
Table 3. 

Tab le  2 C o n d i t i o n a l  p robab i l i t i e s  of  o f f sp r ing  Q T L  g e n o t y p e s  g iven  o f f sp r ing  m a r k e r  g e n o t y p e  a n d  sire g e n o t y p e  (p(Qo]  Mk ' MQT)) 

Sire g e n o t y p e  Of f sp r i n g  Q T L  g e n o t y p e s  P r o b a b i l i t y  o f  o f f sp r ing  Q T L  g e n o t y p e  w h e n  o f f sp r ing  m a r k e r  g e n o t y p e  is: 

A A  A B  BB 

Q Q  q q 
A - Q  Q R  1 - q 1 - q 
B - Q  R R  0 0 

Q Q  (1 - r ) q  ((1 - r)(1 - m) + rm)q 
Q R  (1 - r)(1 - q) + rq ((1 - r)(1 - m) + rm)(1 - q) 

A - Q  + (r(1 - m) + (1 - r)m)q 
B - R  R R  r(1 - q) (r(1 - m) + (1 - r)m)(1 - q) 

Q Q  rq (r(1 - m) + (1 - r)m)q 
Q R  (1 - r)q + r(1 - q) (r(1 - m) + (1 - r)m)(1 - q) 

A - R  + ((1 - r)(1 - m) + rm)q 
B - Q  R R  (1 - r)(1 - q) ((1 - r)(1 - m) + rm)(1 - q) 

Q Q  0 0 
A - R  Q R  q q 
B - R  R R  1 - q 1 - q 

q 
1 - - q  
0 

rq 
(1 - r ) q  + r ( 1  - q)  

(1  - -  r ) ( 1  - -  q )  

(1  - r)q 
(1  - -  r ) ( 1  - -  q) + rq 

r(1 --  q) 

0 
q 
1 - - q  



Table 3 Expected genotypic  devia t ion f rom the overall  m e a n  of offspring with defined marke r  g e n o t y p e  
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Sire genotype  F requency  Offspr ing marke r  geno type  

AA AB 
0 .5m 0.5 

BB 
0.5 (1 -- m) 

A-Q q2 qa 

B - Q  + (1 - q)d 

A - Q  q(1 --  q) (q - r)a 
B - R  + (2qr  - r - -  q + 1)d 

A R q ( 1 - q )  ( r + q - 1 ) a  
B - Q  + (r + q - 2rq)d 

A - R  (1 - q)2 (q - 1)a 
B - R  + qd 

qa qa 

+ (1 - q)d + (1 -- q)d 

( q - m - r  + 2rm)a  (r + q -  1)a 
+ (1 - r -  m -  q + 2rm + 2rq + 2mq - 4rmq)d  + (r + q - 2rq)d  

(q + m + r - 2rm - 1)a (q - r)a 
+ (r + m + q - 2rm - 2rq - 2mq + 4rmq)d  + (2qr - r - q + 1)d 

(q - 1)a (q - 1)a 
+ qd + qd 

The coefficient of relationship conditional 
on marker information 

As was already stated in the introduction, the coefficient 
of relationship is defined as the correlation between 
additive genetic values of two individuals. Therefore, the 
conditional coefficient of relationship in the present case 
is equal to the conditional halfsib correlation. 

Let gx denote the unknown QTL effect of individual 
x. The covariance of these QTL effects for two daughters 
x and y with marker genotype m x and my (each being 
either 1, 2 or 3) of a sire that is heterozygous at the 
marker locus then is 

4 

cov(gx, gylM~176 = ~, P(MQ~)(cimx - 6)(Cim, -- 6) 
i = 1  

where 6 is the expected overall genotypic mean deviation 
from #; in the biallelic case 

g = (2q - 1)a -- 2(q -- qZ)d. 

The probabilities of all possible marker-QTL combina- 
tions for sires that are heterozygous AB at the marker 
locus, P(MQ~). i =  1,. . . ,4, are given as sire genotype 
frequencies in Table 3. If we denote the total marker 
information as M, the coefficient of relationship condi- 
tional on M, RxylM, is the conditional covariance 
divided by the additive genetic variance at the QTL, 0 -2, 
which is in the biallelic case (Falconer 1989) 

2 = 2 q ( 1  - -  q)[a +(1-- 2q)d] 2 (Tq 

so that 

R~y I M = c o v ( g ~ ,  gr I M~ M~ 
O-q 

s _ ~2 P(MQi)c~ci~,  
__ i = 1  

2q(1 -- q)[a + (1 -- 2q)d] 2 

According to this formula, the conditional relationship 
coefficients were derived for the general case with the aid 
of the program Mathematica (Wolfram 1991) and are 
given in Table 4. 

One remarkable result is that the conditional rela- 
tionship coefficients are independent of the parameters 
q, a and d of the QTL, which cancel out in the division of 
the conditional covariance by a 2. Rxy ] M is also indepen- 
dent of the QTL genotype of the sire, which usually is 
unknown. Conditional halfsib correlations are functions 
of r and, if at least one individual with marker genotype 
AB is involved, ofm (see also Dekkers and Dentine 1991; 
Hoeschele 1993). The reason for this may be illustrated 
by the following example: let us assume that the popula- 
tion frequency m of A is low. Then, an AB daughter of an 
AB sire has a higher probability of having obtained the 
B allele from the population and the A allele from the 
sire than vice versa. Hence, the AB individual is prob- 
ably more similar to an AA halfsib than to one with 
marker genotype BB because the former has also ob- 
tained the A allele from the common sire. This is shown 
in Figs. 1 and 2, where conditional halfsib relationships 
for all marker genotypes depending on the recombina- 
tion rate are plotted for a low (m = 0.1, Fig. 1) and 
medium (m --- 0.4, Fig. 2) frequency of the A allele. With 
low frequencies of A (Fig. 1) halfsib correlations given 

Table 4 Corre la t ion  of addit ive Q T L  effects be tween halfsibs condi-  
t ional  on  k n o w n  marke r  geno type  combina t i on  

M a r k e r  comb ina t i on  of halfsibs Condi t iona l  halfsib corre la t ion 

A A - A A  or B B - B B  �89 -- (r -- r 2) 

AA BB (r - r z) 

A A - A B  �89 - (m/2 + (1 - 2m)(r - r2)) 

B B - A B  m/2  + (1 - 2m)(r - r 2) 
1 1 2 A B - A B  ~ + (~ - m) - (1 - 2m)2(r - r 2) 
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Fig. 1 Halfsib correlation con- 
ditional on marker  genotype 
combination depending on the 
recombination rate r; frequency 
m of marker allele A is 0.1 

0.5- 

= 0.4 o 

8 0.3 

~ 0 .2  g 

~ 0.1. 

AA-AA; BB-BB . . . .  BB-AB 

................. AA-BB - - - - -  AB-AB 

- - -  AA-AB 
---. 

........................................ 

0 . . . .  
I . . . .  i . . . .  I . . . .  } . . . .  I 

0 0.1 0.2 0.3 0.4 0.5 

Recombination rate 

Fig. 2 Halfsib correlation con- 
ditional on marker  genotype 
combination depending on the 
recombination rate r; frequency 
m of marker  allele A is 0.4 

0.5- ~ AA-AA; BB-BB . . . .  BB-AB 

- ~  ................. AA-BB . . . . .  - AB-AB 
8 ~ 

] - -  AA-AB 

~ 0.1 ....'"'"'""""" 8 

"""" ""'" '""2 o ,'"i"'"i . . . .  , . . . .  , . . . .  , . . . .  , 
0 0.1 0.2 0.3 0.4 0.5 

Recombination rate 

the marker genotype combinations AA-AB and 
AB-AB are close to the one obtained with marker 
genotype combination AA-AA, while the combination 
BB-AB yields results similar to the combination 
AA-BB. With intermediate frequencies (Fig. 2), all cor- 
relations including AB animals are close to 0.25 (they are 
exactly 0.25 with m --- 0.5). 

In the extreme case of complete linkage (r = 0), the 
correlation of two identically homozygous halfsibs 
(AA-AA or BB-BB) is 0.5, while the correlation of 
differently homozygous halfsibs (AA-BB) is 0. This is so 
because in the former case the two progeny have ob- 
tained the same QTL-allele from the sire, while in the 
latter case they have obtained different alleles (which 
may be identical if the sire is homozygous at the QTL, 
but are not identical by descent if the sire is not inbred). 
That means, that identically homozygous halfsibs are as 
informative as fullsibs in the unconditional case. With 
decreasing linkage (r--. 0.5) all conditional relationship 
coefficients approach 0.25, the usual halfsib correlation, 
because with free recombination the marker provides no 
information about the QTL genotype. 

Extension to more general situations 

Multiple alleles at the marker locus 

Offspring marker genotypes are only informative if the 
sire is heterozygous at the marker locus. If there are 
more than two marker alleles segregating in the popula- 
tion, a heterozygous sire still can only carry two of them. 
If, say, the sire has marker genotype AB but additional 
alleles (C,D,. . .)  exist, three cases have to be distin- 
guished: 

- offspring with genotype AA or AC, AD... (denoted as 
'A-'  which means 'A and not B') definitely have 
obtained allele A from the sire and are to be treated 
like an AA offspring; 

- offspring with genotype BB or BC, BD... (denoted as 
'B-'  which means 'B and not A') definitely have ob- 
tained allele B from the sire and are to be treated like a 
BB offspring; 

- offspring with genotype AB remain ambiguous, i.e. it 
is not clear which allele stems from the sire. It is only 
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in this situation that the genotyping of the dam 
potentially adds information. If the dam is, say, AA, 
then it is clear that the B allele stems from the sire. If in 
the multiallelic case no information on the maternal 
marker genotype is available, the marker allele fre- 
quency m in Table 4 has to be replaced by the term 
ma/(m A q-mB), where m a and m B are the population 
frequencies of the alleles A and B. If the dam is 
genotyped and also AB, use m = 0.5. 

Multiple alleles at the QTL 

The conditional relationship coefficient was shown to be 
independent of the parameters q, a and d of the QTL in 
the biallelic case. This property holds also for multiple 

z alleles at the QTL, except for trivial cases where crq 
becomes zero, i.e. the frequency of one allele being unity 
or all genotypic values being identical. This is an impor- 
tant result, since it means that in analyses based on the 
concept presented here there is no need to specify the 
nature of the potential QTL in terms of numbers of 
alleles, degree of dominance etc. 

Several marker loci 

The association ofa  QTL with one linked marker is less 
informative than its association with two flanking 
markers. In the former case a recombination between 
the marker and the QTL remains undetected, and by 
this a source of error. In the latter case, only double 
recombinations remain undetected. Since double re- 
combinations are much less likely than single recom- 
binations, flanking markers potentially are much more 
useful for practical applications. 

If we assume one linked marker locus at either side of 
the QTL, only offspring groups of sires which are he- 
terozygous at both marker loci are fully informative. If, 
say, a sire carries alleles A and B at the first marker locus 
and alleles C and D at the second one with known 
linkage phase A-C, two offspring with marker genotype 
AA-CC will have obtained the same paternal QTL 
allele unless a double recombination has taken place. If, 
however, an offspring has marker genotype AA-DD, it 
iscertain that one recombination has taken place, but it 
remains unknown whether the first marker and the QTL 
or the QTL and the second marker are recombined. 

For the flanking marker situation, conditional 
halfsib relationship coefficients can be derived along the 
exact same lines as demonstrated above for a single 
marker locus. Unfortunately, the derivation does not 
result in as simple terms as displayed in Table 4 for the 
single marker situation. With nine different offspring 
marker genotypes in the flanking marker situation, 45 
different marker genotype combinations are possible, 
leading to 41 different conditional relationship coef- 
ficients (the reduction by 4 is due to the fact that some of 
the offspring combinations are equally informative). The 

respective conditional halfsib correlations depend on 
the recombination rates between the markers and the 
QTL and on the marker allele frequencies, but again not 
on parameters of the QTL. A FORTRAN subroutine to 
set up the conditional relationship coefficients for a 
given set of parameters was written and is available from 
the author upon request. 

The effect of flanking markers will be demonstrated 
with the following example: two biallelic marker loci are 
assumed that are 40 centiMorgan (cM) apart. A sire is 
assumed to have marker genotype AB-CD with known 
linkage phase A-C. The position of a potential QTL is 
moved in steps of 1 cM from the position of marker 1 to 
the position of marker 2, and at each assumed QTL 
position the conditional halfsib correlation is calculated 
for 

- two offspring with marker genotype AA-CC; 
- two offspring with marker genotype AA-CC and 

AA-CD, respectively. 

The results are given in Fig. 3. Since the conditional 
halfsib correlations are a function of recombination 
rates rather than genetic distances in cM, the map 
function has an impact on the results. In the example, 
the Haldane map function (Haldane 1919), assuming no 
interference, and the Kosambi map function (Kosambi 
1944), assuming partial interference, were used. The 
latter leads to lower values of Rxy IM, since with the 
Kosambi map function the probability of recombina- 
tion of loci with a given distance in cM is higher than 
with the Haldane map function. 

For the first pair of equally homozygous offspring, 
the conditional halfsib correlation is 0.5 if the position of 
the QTL is at either of the two markers and is slightly 
less if the QTL is assumed to lie in the interval, the 
reduction accounting for the possibility of double re- 
combination with maximum probability if the QTL lies 

Fig. 3 Conditional halfsib relationship coefficients at a QTL flanked 
by two marker loci depending on the assumed position of the QTL, 
the marker genotype combination, and the map function (Haldane or 
Kosambi map function) used 

8 
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exactly in the middle of the interval. For the second pair 
of offspring, the informativeness of the second marker 
locus depends on the population frequency of the alleles 
at this locus; the frequency of C was assumed to be 0.25. 
Although there is a certain amount of ambiguity, the 
conditional halfsib correlation remains consistently 
above 0.4 even close to the second marker locus due to 
the information on the first marker (the conditional 
halfsib correlation given only the information on the 
second marker would be RxrIM <_ 0.375 with the maxi- 
mum at r = 0). 

Other types of  pedigrees 

The approach used in this study can be extended to 
other types of systematic pedigree structures, i.e. to 
fullsib populations or to hierarchically nested half- and 
fullsib structures as they arise in multiparous species like 
pigs, sheep, fish etc. An adaptation to experimental 
crosses of inbred lines seems possible but requires 
further research. An extension to arbitrary pedigrees 
(including all types of relationships and inbred individ- 
uals), however, certainly is not straightforward. 
Chevalet et al. (1984) have presented a general, but also 
very complex, approach to this problem. In order to 
avoid some kind of "combinatorial explosion" they 
suggested to restrict its use to sparse pedigrees over few 
generations. As an alternative, it is also possible to 
derive conditional relationship coefficients from the 
conditional gametic variance-covariance matrix sug- 
gested by Fernando and Grossman (1989). 

Derivation of conditional relationship coefficients 
with the approach of Fernando and Grossman (1989) 

Fernando and Grossman (1989) and subsequent studies 
(Cantet and Smith 1991; Goddard 1992; Hoeschele 
1993) considered the covariance matrix G~ of gametic 
effects at the QTL. I fN individuals are considered, this is 
a 2N x 2N matrix containing the variances and 
covariances of the two gametic effects per individual. 
The genetic effect at a QTL is the sum of the gametic 
effects, and hence the variance of the genetic effect is the 
sum of the 2 x 2 submatrix on the diagonal of Gv 
pertaining to this individual, as was also shown by 
Hoeschele (1993). Similarly, the covariance of the ge- 
netic effects of two individuals is the sum of the 2 • 2 
offdiagonal submatrix in G~ comprising the covariances 
of the respective gametes. Formally, this summation can 
be written K'G~K with K ' =  Iu(~ [11] where I N is an 
identity matrix of dimension N and | symbolizes the 
direct of Kronecker product (Searle 1966). 

G~ can be split into a dispersion matrix A~ times the 
2 pertaining to a additive variance of the QTL effects o-~ 

z as used in the present study is the single gamete, aq 
variance of the sum of the two gametic effects at the 
QTL, hence 0.5o-2 = o'~ z if the base animals are not 

inbred. Making use of this, K'G~K can be written as 

K GvK ' 2 , 2 2 ' = K A~Ka~ = Qaq. = 0.5 K A,Kaq 

Q = 0.5 K'A~K is the single-locus numerator relation- 
ship matrix conditional on marker information. 

For the numerical example given by Fernando and 
Grossman (1989), the matrix Q corresponding to the 
matrix Gv given in their Table II is 

l"00 000 1 
t 

Q =  1.00 0.75[ 

Lsym. 1.45j 

In this pedigree, there is not only a conditional relation- 
ship, but also conditional inbreeding with a conditional 
inbreeding coefficient F4]M = 0.45 for the last individ- 
ual. Since the relationship coefficient is defined as a 
correlation, inbreeding has to be accounted for, and in 
the general case 

R i j l M _  ,.~q_ij: _ qij 
x/qii • q# x/( 1 + FilM) • (1 + Fi lM)  

This yields, e.g. for the conditional relationship of ani- 
mal 1 and 4, 

0.95 
- = 0.789, 

R14]M ~/1.00 x 1.45 

and correspondingly R241M=O.041 and R341M= 
0.623. 

The approach suggested by Fernando and Grossman 
(1989) can hence be used to derive conditional relation- 
ship coefficients in complex pedigrees that cannot be 
handled with the approach suggested in the present 
paper. However, the basic algorithm suggested by Fer- 
nando and Grossman (1989) assumes that it is known 
unambiguously for each individual which marker allele 
was obtained from the sire and the dam. The above- 
mentioned case of an AB sire having an AB offspring 
with unknown dam cannot be handled in their approach 
or, at least, no clear rules are given how to do it. These 
practical limitations of the approach suggested by Fer- 
nando and Grossman (1989) have been eliminated by 
Hoeschele (1993). 

Discussion and potential applications 

The concept of single-locus relationship coefficients 
conditional on marker information can be used for the 
purposes of detection of QTLs and for marker-assisted 
selection. Consider the mixed linear model 

y = X f l + a + q + e  



where y is the observation vector, Xfi contains the set of 
fixed effects, a is the vector of random polygenic additive 
effects, q is a vector of random additive genetic effects of 
the QTL and e is the random error vector. The variance- 
c0variance matrix of the random effects then is 

Vat = Qa 2 

Ia 2 

where A is the polygenic additive numerator relation- 
ship matrix and Q is the single-locus additive genetic 
numerator relationship matrix conditional on marker 
information. If observations are on halfsibs, simple rules 
can be given how to set up Q, since 

1.00 
0.00 

qiJ = 0.25 

Rijl M 

if i = j  
if individuals i and j are not 
halfsibs 
if individual i and j are halfsibs 
with a non-informative sire 
if individual i and j are halfsibs 
with an informative sire 

Based on this mixed linear model, best linear unbiased 
predictions of the polygenic and the single-locus breed- 
ing values can be computed from Henderson's mixed 
model equations (Henderson 1973). 

It is also possible to estimate the variance compo- 
nents and to assess the association of a putative QTL 
with markers. The respective parameters can be es- 
timated with a maximum likelihood or residual maxi- 
mum likelihood approach (Patterson and Thompson 
1971), and hypotheses (e.g. presence versus absence of a 
QTL in a marked chromosome segment) can be tested 
with the likelihood ratio test (Kendall and Stuart 1979). 
An application of this approach to detect potential 
QTLs for milk production traits in the region of the 
polymorphic casein genes will be reported elsewhere 
(Simianer 1993). 

When using gametic covariance matrices, Cantet and 
Smith (1991) and Goddard (1992) suggested applying a 
reduced animal model to reduce the dimension of the 
mixed model equation system in the best linear unbiased 
prediction of random polygenic and gametic effects 
at one or several QTLs. Hoeschele (1993) suggested 
estimating gametic effects only for individuals with per- 
tinent marker information, which yields a further reduc- 
tion of the dimension of the system of equations to solve. 
A substantial reduction can also be achieved with the 
transformation of A~ to the conditional numerator rela- 
tionship matrix Q and its use in a mixed linear model to 
predict QTL gene effects. Since only one effect per 
animal and QTL has to be estimated, the dimension of 
the system of linear equations to solve is reduced from 
Np + 3Na to Np + 2N,, where N~ is the number of 
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estimable fixed effects and N a is the number of individ- 
uals considered. A further substantial reduction to di- 
mension Ne + Na is possible if the equivalent model 

y = X f i + . + e  

is used, where c~ = a + q is the vector of combined poly- 
genic and single-locus additive effects with Var (~)= 

2 2 A% + QtT q. 
Algorithms to set up Q- 1 or (A + cQ)- 1, where c is a 

known constant, directly, however, are not available. In 
the application to halfsib pedigrees suggested in this study, 
this is not a problem since A and Q are blockdiagonal 
with block sizes equal to the number of progeny per sire. 
Such matrices can be numerically inverted in most cases. 

The derivations presented here and in virtually all 
related studies are based on assumptions with respect to 
the genetic constellation, e.g. presence of Hardy-Wein- 
berg and linkage phase equilibria, independence of poly- 
genic and single-locus effects etc. These assumptions 
may be justified when non-selected base populations are 
considered. If, however, the data reflect a selection proc- 
ess or the base generation animals in the pedigree were 
selected, related to each other or inbred, these assump- 
tions are certainly violated because, for example, selec- 
tion introduces covariance between single-locus and 
polygenic additive effects. This latter situation is the 
more likely one when dealing with real life data. Hence, 
further research is needed to assess the impact of a viola- 
tion of these assumptions or to derive approaches which 
apply to less restricted and more realistic situations. 
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